#!/bin/sh
# A Poor(but Free)'s Man dtrace
#
# Copyright (C) 2014-2019 Free Software Foundation, Inc.
#
# Contributed by Oracle, Inc.
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see
# .
# DISCLAIMER DISCLAIMER DISCLAIMER
# This script is a test tool.  As such it is in no way intended to
# replace the "real" dtrace command for any practical purpose, apart
# from testing the DTrace USDT probes support in GDB.
# that said...
#
# pdtrace is a limited dtrace program, implementing a subset of its
# functionality:
#
# - The generation of an ELF file containing an embedded dtrace
#   program.  Equivalent to dtrace -G.
#
# - The generation of a header file with definitions for static
#   probes.  Equivalent to dtrace -h.
#
# This allows to generate DTrace static probes without having to use
# the user-level DTrace components.  The generated objects are 100%
# compatible with DTrace and can be traced by the dtrace kernel module
# like if they were generated by dtrace.
#
# Some of the known limitations of this implementation are:
# - The input d-script must describe one provider, and only one.
# - The "probe " directives in the d-file must not include argument
#   names, just the types.  Thus something like `char *' is valid, but
#   `char *name' is not.
# - The command line options must precede other arguments, since the
#   script uses the (more) portable getopts.
# - Each probe header in the d-script must be contained in
#   a single line.
# - strip -K removes the debugging information from the input object
#   file.
# - The supported target platforms are i[3456]86 and x86_64.
#
# Please keep this code as portable as possible.  Restrict yourself to
# POSIX sh.
# This script uses the following external programs, defined in
# variables.  Some of them are substituted by autoconf.
TR=tr
NM=i386-pc-linux-gnu-nm
EGREP=egrep
SED=sed
CUT=cut
READELF=i386-pc-linux-gnu-readelf
SORT=sort
EXPR=expr
WC=wc
UNIQ=uniq
HEAD=head
SEQ=seq
AS=i386-pc-linux-gnu-as
STRIP=i386-pc-linux-gnu-strip
TRUE=true
# Sizes for several DOF structures, in bytes.
#
# See linux/dtrace/dof.h for the definition of the referred
# structures.
dof_hdrsize=64      # sizeof(dtrace_dof_hdr)
dof_secsize=32      # sizeof(dtrace_dof_sect)
dof_probesize=48    # sizeof(dtrace_dof_probe)
dof_providersize=44 # sizeof(dtrace_dof_provider)
# Types for the several DOF sections.
#
# See linux/dtrace/dof_defines.h for a complete list of section types
# along with their values.
dof_sect_type_strtab=8
dof_sect_type_provider=15
dof_sect_type_probes=16
dof_sect_type_prargs=17
dof_sect_type_proffs=18
dof_sect_type_prenoffs=26
### Functions
# Write a message to the standard error output and exit with an error
# status.
#
# Arguments:
#   $1 error message.
f_panic()
{
    echo "error: $1" 1>&2; exit 1
}
# Write a usage message to the standard output and exit with an error
# status.
f_usage()
{
    printf "Usage: pdtrace [-32|-64] [-GhV] [-o output] [-s script] [ args ... ]\n\n"
    printf "\t-32 generate 32-bit ELF files\n"
    printf "\t-64 generate 64-bit ELF files\n\n"
    printf "\t-G  generate an ELF file containing embedded dtrace program\n"
    printf "\t-h  generate a header file with definitions for static probes\n"
    printf "\t-o  set output file\n"
    printf "\t-s  handle probes according to the specified D script\n"
    printf "\t-V  report the DTrace API version implemented by the tool\n"
    exit 2
}
# Write a version message to the standard output and exit with a
# successful status.
f_version()
{
    echo "pdtrace: Sun D 1.6.3"
    exit
}
# Add a new record to a list and return it.
#
# Arguments:
# $1 is the list.
# $2 is the new record
f_add_record()
{
    rec=$1
    test -n "$rec" && \
        { rec=$(printf %s\\n "$rec"; echo x); rec=${rec%x}; }
    printf %s "$rec$2"
}
# Collect the providers and probes information from the input object
# file.
#
# This function sets the values of the following global variables.
# The values are structured in records, each record in a line.  The
# fields of each record are separated in some cases by white
# characters and in other cases by colon (:) characters.
#
# The type codes in the line format descriptors are:
# S: string, D: decimal number
#
# probes
#   Regular probes and is-enabled probes.
#   TYPE(S) PROVIDER(S) NAME(S) OFFSET(D) BASE(D) BASE_SYM(S)
# base_probes
#   Base probes, i.e. probes sharing provider, name and container.
#   PROVIDER(S) NAME(S) BASE(D) BASE_SYM(S)
# providers
#   List of providers.
#   PROVIDER(S)
# All the offsets are expressed in bytes.
#
# Input globals:
#  objfile
# Output globals:
#  probes, base_probes, providers
probes=
base_probes=
providers=
probes_args=
f_collect_probes()
{
    # Probe points are function calls to undefined functions featuring
    # distinct names for both normal probes and is-enabled probes.
    PROBE_REGEX="(__dtrace_([a-zA-Z_]+)___([a-zA-Z_]+))"
    EPROBE_REGEX="(__dtraceenabled_([a-zA-Z_]+)___([a-zA-Z_]+))"
    while read type symbol provider name; do
          test -z "$type" && f_panic "No probe points found in $objfile"
          provider=$(printf %s $provider | $TR -s _)
          name=$(printf %s $name | $TR -s _)
          # Search the object file for relocations defined for the
          # probe symbols.  Then calculate the base address of the
          # probe (along with the symbol associated with that base
          # address) and the offset of the probe point.
          for offset in $($READELF -W -r $objfile | $EGREP $symbol | $CUT -d' ' -f1)
          do
              # Figure out the base address for the probe.  This is
              # done finding the function name in the text section of
              # the object file located above the probed point.  But
              # note that the relocation is for the address operand of
              # the call instruction, so we have to subtract 1 to find
              # the real probed point.
              offset=$((0x$offset - 1))
              # The addresses of is-enabled probes must point to the
              # first NOP instruction in their patched instructions
              # sequences, so modify them (see f_patch_objfile for the
              # instruction sequences).
              if test "$type" = "e"; then
                  if test "$objbits" -eq "32"; then
                      offset=$((offset + 2))
                  else # 64 bits
                      offset=$((offset + 3))
                  fi
              fi
              
              # Determine the base address of the probe and its
              # corresponding function name.
              funcs=$($NM -td $objfile | $EGREP "^[0-9]+ T " \
                      | $CUT -d' ' -f1,3 | $SORT -n -r | $TR ' ' :)
              for fun in $funcs; do
                  func_off=$(printf %s $fun | $CUT -d: -f1)
                  func_sym=$(printf %s $fun | $CUT -d: -f2)
                  # Note that `expr' is used to remove leading zeros
                  # to avoid FUNC_OFF to be interpreted as an octal
                  # number in arithmetic contexts.
                  test "$func_off" -le "$offset" && \
                      { base=$($EXPR $func_off + 0); break; }
              done
              test -n "$base" || \
                f_panic "could not find base address for probe at $objfile($o)"
              # Emit the record for the probe.
              probes=$(f_add_record "$probes" \
                                    "$type $provider $name $(($offset - $base)) $base $func_sym")
          done
      done < loadable section.
    f_gen_asm ".4byte 1\t/* uint32_t dofs_flags  */"
    f_gen_asm ".4byte $4\t/* uint32_t dofs_entsize  */"
    f_gen_asm ".8byte $5\t/* uint64_t dofs_offset  */"
    f_gen_asm ".8byte $6\t/* uint64_t dofs_size  */"
}
# Generate a DOF program and assembly it in the output file.
#
# The DOF program generated by this function has the following
# structure:
#
# HEADER
# STRTAB OFFTAB EOFFTAB [PROBES PROVIDER]...
# STRTAB_SECT OFFTAB_SECT EOFFTAB_SECT ARGTAB_SECT [PROBES_SECT PROVIDER_SECT]...
#
# Input globals:
#   probes, base_probes, providers, probes_args, BCOUNT
f_gen_dof_program()
{   
    ###### Variables used to cache information needed later.
    
    # Number of section headers in the generated DOF program.
    dof_secnum=0
    # Offset of section headers in the generated DOF program, in bytes.
    dof_secoff=0
    # Sizes of the STRTAB, OFFTAB and EOFFTAB sections, in bytes.
    strtab_size=0
    offtab_size=0
    eofftab_size=0
    
    # Offsets of the STRTAB, OFFTAB EOFFTAB and PROBES sections in the
    # generated DOF program.  In bytes.
    strtab_offset=0
    offtab_offset=0
    eofftab_offset=0
    argtab_offset=0
    probes_offset=0
    
    # Indexes of the section headers of the STRTAB, OFFTAB, EOFFTAB and
    # PROBES sections in the sections array.
    strtab_sect_index=0
    offtab_sect_index=0
    eofftab_sect_index=0
    argtab_sect_index=0
    probes_sect_index=0
    # First offsets and eoffsets of the base-probes.
    # Lines: PROVIDER(S) NAME(S) BASE(D) (DOF_OFFSET(D)|DOF_EOFFSET(D))
    probes_dof_offsets=
    probes_dof_eoffsets=
    
    # Offsets in the STRTAB section for the first type of base probes.
    # Record per line: PROVIDER(S) NAME(S) BASE(D) OFFSET(D)
    probes_dof_types=
    # Offsets of the provider names in the provider's STRTAB section.
    # Lines: PROVIDER(S) OFFSET(D)
    providers_dof_names=
    # Offsets of the base-probe names in the provider's STRTAB section.
    # Lines: PROVIDER(S) NAME(S) BASE(D) OFFSET(D)
    probes_dof_names=
    
    # Offsets of the provider sections in the DOF program.
    # Lines: PROVIDER(S) OFFSET(D)
    providers_offsets=
    ###### Generation phase.
    
    # The header of the DOF program contains a `struct
    # dtrace_dof_hdr'.  Record its size, but it is written at the end
    # of the function.
    f_incr_bcount $dof_hdrsize; f_align_bcount 8
    # The STRTAB section immediately follows the header.  It contains
    # the following set of packed null-terminated strings:
    #
    # [PROVIDER [BASE_PROBE_NAME [BASE_PROBE_ARG_TYPE...]]...]...
    strtab_offset=$BCOUNT
    strtab_sect_index=$dof_secnum
    dof_secnum=$((dof_secnum + 1))
    f_gen_asm ""
    f_gen_asm "/* The STRTAB section.  */"
    f_gen_asm ".balign 8"
    # Add the provider names.
    off=0
    while read provider; do
        strtab_size=$(($strtab_size + ${#prov} + 1))
        # Note the funny mangling...
        f_gen_asm ".asciz \"$(printf %s $provider | $TR _ -)\""
        providers_dof_names=$(f_add_record "$providers_dof_names" \
                                           "$provider $off")
        off=$(($off + ${#provider} + 1))
        # Add the base-probe names.
        while read p_provider name base base_sym; do
            test "$p_provider" = "$provider" || continue
            # And yes, more funny mangling...
            f_gen_asm ".asciz \"$(printf %s $name | $TR _ -)\""
            probes_dof_names=$(f_add_record "$probes_dof_names" \
                                            "$p_provider $name $base $off")
            off=$(($off + ${#name} + 1))
            while read args; do
                a_provider=$(printf %s "$args" | $CUT -d: -f1)
                a_name=$(printf %s "$args" | $CUT -d: -f2)
                test "$a_provider" = "$p_provider" \
                    && test "$a_name" = "$name" \
                    || continue
                probes_dof_types=$(f_add_record "$probes_dof_types" \
                                                "$a_provider $name $base $off")
                nargs=$(printf %s "$args" | $CUT -d: -f3)
                for n in $($SEQ $nargs); do
                    arg=$(printf %s "$args" | $CUT -d: -f$(($n + 3)))
                    f_gen_asm ".asciz \"${arg}\""
                    off=$(($off + ${#arg} + 1))
                done                
            done < /dev/null
            break
        fi
    done < /dev/null)
        test "$byte" = "$x86_op_jmp32" && nopret="$x86_op_ret"
        # Determine the patching sequence.  It depends on the type of
        # probe at hand (regular or is-enabled) and also if
        # manipulating a 32bit or 64bit binary.
        patchseq=
        case $type in
            p) patchseq=$(printf %s%s%s%s%s \
                                 "$nopret" \
                                 "$x86_op_nop" \
                                 "$x86_op_nop" \
                                 "$x86_op_nop" \
                                 "$x86_op_nop")
               ;;
            e) test "$objbits" -eq 64 && \
                 patchseq=$(printf %s%s%s%s%s \
                                   "$x86_op_rex_rax" \
                                   "$x86_op_xor_eax_0" \
                                   "$x86_op_xor_eax_1" \
                                   "$nopret" \
                                   "$x86_op_nop")
               test "$objbits" -eq 32 && \
                 patchseq=$(printf %s%s%s%s%s \
                                   "$x86_op_xor_eax_0" \
                                   "$x86_op_xor_eax_1" \
                                   "$nopret" \
                                   "$x86_op_nop" \
                                   "$x86_op_nop")
               ;;
            *) f_panic "internal error: wrong probe type $type";;
        esac
        # Patch!
        printf %s "$patchseq" \
               | dd of=$objfile conv=notrunc count=5 ibs=1 bs=1 seek=$probe_off 2> /dev/null
    done <\n"
    printf "#include \n"
    printf \\n\\n
    printf "#ifdef __cplusplus\nextern \"C\" {\n#endif\n"
    printf "#define _DTRACE_VERSION 1\n\n"
    provider=$(cat $dfile | $EGREP "^ *provider +([a-zA-Z_]+)" \
               | $SED -E -e 's/^ *provider +([a-zA-Z]+).*/\1/')
    test -z "$provider" \
        && f_panic "unable to parse the provider name from $dfile."
    u_provider=$(printf %s "$provider" | $TR a-z A-Z | $TR -s _)
    
    cat $dfile | $EGREP "^ *probe +[a-zA-Z_]+ *\(.*\);" | \
        while read line; do
            # Extract the probe name.
            name=$(printf %s "$line" \
                   | $SED -E -e 's/^ *probe +([a-zA-Z_]+).*/\1/')
            u_name=$(printf %s "$name" | $TR a-z A-Z | $TR -s _)
            # Generate an arg1,arg2,...,argN line for the probe.
            args=""; nargs=0; aline=$(printf %s "$line" | $SED -e 's/.*(\(.*\)).*/\1/')
            set -f; IFS=,
            for arg in $aline; do
                args="${args}arg${nargs},"
                nargs=$((nargs + 1))
            done
            set +f; unset IFS
            args=${args%,}
            echo "#if _DTRACE_VERSION"
            echo ""
            
            # Emit the macros for the probe.
            echo "#define ${u_provider}_${u_name}($args) \\"
            echo "   __dtrace_${provider}___${name}($args)"
            echo "#define ${u_provider}_${u_name}_ENABLED() \\"
            echo "   __dtraceenabled_${provider}___${name}()"
            # Emit the extern definitions for the probe dummy
            # functions.
            echo ""
            printf %s\\n "$line" \
                | $SED -E -e "s/^ *probe +/extern void __dtrace_${provider}___/"
            echo "extern int __dtraceenabled_${provider}___${name}(void);"
            printf "\n#else\n"
            # Emit empty macros for the probe
            echo "#define ${u_provider}_${u_name}($args)"
            echo "#define ${u_provider}_${u_name}_ENABLED() (0)"
            printf "\n#endif /* _DTRACE_VERSION */\n"
        done
    printf "#ifdef __cplusplus\n}\n#endif\n\n"
    printf "#endif /* _${guard}_H */\n"
}
### Main program.
# Process command line arguments.
test "$#" -eq "0" && f_usage
genelf=0
genheader=0
objbits=64
ofile=
dfile=
while getopts VG3264hs:o: name; do
    case $name in
        V) f_version;;
        s) dfile="$OPTARG";
           test -f "$dfile" || f_panic "cannot read $dfile";;
        o) ofile="$OPTARG";;
        G) genelf=1;;
        h) genheader=1;;
        # Note the trick to support -32
        3) objbits=666;;
        2) test "$objbits" -eq 666 || f_usage; objbits=32;;
        # Likewise for -64
        6) objbits=777;;
        4) test "$objbits" -eq 777 || f_usage; objbits=64;;
        ?) f_usage;;
    esac
done
shift $(($OPTIND - 1))
test "$objbits" -eq "32" || test "$objbits" -eq "64" \
    || f_usage
test $((genelf + genheader)) -gt 1 && \
    { echo "Please use either -G or -h."; f_usage; }
test -n "$dfile" || { echo "Please specify a .d file with -s."; exit 2; }
if test "$genelf" -gt 0; then
    # In this mode there must be a remaining argument: the name of the
    # object file to inspect for probed points.
    test "$#" -ne "1" && f_usage
    test -f "$1" || f_panic "cannot read $1"
    objfile=$1
    # Collect probe information from the input object file and the
    # d-script.
    f_collect_probes $objfile    
    f_collect_probes_args $dfile
    # Generate the assembly code and assemble the DOF program in
    # OFILE.  Then patch OBJFILE to remove the dummy probe calls.
    f_gen_dof_program
    f_patch_objfile $objfile
fi
if test "$genheader" -gt 0; then
    test -n "$ofile" || { echo "Please specify an output file with -o."; exit 2; }
    
    # In this mode no extra arguments shall be present.
    test "$#" -ne "0" && f_usage
    f_gen_header_file > $ofile
fi
# pdtrace ends here.